In a 4-dimensional Lorentz Manifold \((M, g)\), symmetries are often described by a finite dimensional Lie algebra \(A\) of vector fields. The associated distribution \(\Delta : m \rightarrow \Delta(m) = \{X(m) : X \in A\}\) is integrable with a natural orbit structure generated by the local flows of members of \(A\). Usually the symmetries involved are the symmetries or conformal symmetries of the Lorentz metric \(g\) or the affine or projective symmetries of its associated Levi-Civita connection. (Other symmetries may also be considered but then \(A\) may not be finite-dimensional). In studying the orbits of \(A\), concepts of stability and dimensional stability will be introduced. A general review of the theory will be given and, in particular, the application to the study of symmetry in general relativity theory.