On the multi-component NLS type models and their gauge equivalent

V. S. Gerdjikov and G. G. Grahovski

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
E-mails: gerjikov@inrne.bas.bg, grah@inrne.bas.bg

The fundamental properties of the multi-component nonlinear Schrödinger (NLS) type models related to semi-simple Lie algebra g

\[L(\lambda)\psi(x,t,\lambda) \equiv \left(i \frac{d}{dx} + q(x,t) - \lambda J \right) \psi(x,t,\lambda) = 0, \]

\[M(\lambda)\psi(x,t,\lambda) \equiv \left(i \frac{d}{dt} - \pi_0 \left([q, \text{ad}_J^{-1} q_x] \right) + 2i\text{ad}_J^{-1} q_x(x,t) + 2\lambda q(x,t) - 2\lambda^2 J \right) \psi(x,t,\lambda) = 0, \]

and their gauge equivalent Heisenberg ferromagnet type equations

\[\tilde{L}\tilde{\psi}(x,t,\lambda) \equiv \left(i \frac{d}{dx} - \lambda S(x,t) \right) \tilde{\psi}(x,t,\lambda) = 0, \]

\[\tilde{M}\tilde{\psi}(x,t,\lambda) \equiv \left(i \frac{d}{dt} - 2i\lambda \text{ad}_{S_x}^{-1} S - 2\lambda^2 S \right) \tilde{\psi}(x,t,\lambda) = 0, \]

are analyzed. Here J is a non-regular element of the corresponding Cartan subalgebra \mathfrak{h} (this means that the kernel of the operator ad_J is non-commutative one); $q(x,t) \in g \setminus g_J$; π_0 is the projector onto $g_J = \ker(\text{ad}_J)$; $\lambda \in \mathbb{C}$ is a spectral parameter and

\[\tilde{\psi}(x,t,\lambda) = g^{-1}(x,t)\psi(x,t,\lambda), \quad S(x,t) \equiv \text{Ad}_g \cdot J = g^{-1}(x,t)Jg(x,t), \quad g(x,t) = \psi(x,t,\lambda = 0). \]

We extend our approach in [1, 2] in order to implement additional reductions of these systems. To this end we first describe the scattering data properties of the relevant Lax operator L which in turn determine the spectra of the corresponding recursion operator Λ. Using the expansions over the eigenfunctions of Λ (so-called “squared solutions”) we are able to describe: a) the class of all integrable equations related to L; b) their class of local integrals of motion; c) their hierarchy of Hamiltonian structures.

The results are illustrated by specific examples of NLS type systems and their gauge equivalent related to the $so(5)$-algebra.

References
